
Chemistry Capstone Project: An exploration of model complexity in the
drug discovery field

Authors: Phil Michaels and David Dunstan
University of Michigan: Masters of Applied Data Science Program
August 2022

Abstract
Model selection is an important aspect to any data science project. With new model frameworks
being published regularly, there have been increasing calls for standardized datasets across
industries to help compare the results. We herein describe an evaluation of different models of
varying complexity in the drug-discovery context. We rely on cheminformatics to process and
featurize 6 datasets that cover a range of sizes and drug discovery related tasks. We trained
several common classification models as well as a directed message passing neural network
from the Chemprop package for each dataset. We then compared the models using a range of
metrics and found roc-auc to be the most useful for our examples. From our results, while
Chemprop was amongst the highest scoring in all cases, it did not always outperform the
simpler models. Therefore, we find that exploring a wide range of models to be prudent in
establishing baselines and providing comparative insight.

Introduction
It is March of 2020, and a highly contagious virus is spreading rapidly across the world and killing
without any known treatments. Scientists race to first understand the biology of the virus, decipher its
DNA and protein structures and then identify opportunities for small molecules to interrupt or inhibit
them. This is the exact scenario that many drug discovery scientists find themselves in everyday,
instead of COVID-19  they are looking to treat HIV, Alczheimers, or cancer. The needs of patients drive
the drug discovery industry to find these novel treatments with the utmost speed. Machine learning
holds massive promise to help better predict which molecules can be used to treat these diseases and
get safer drugs to patients faster.

The field of drug discovery is complex due to the interplay between biological mechanisms of disease
and drug candidates. The search often begins with an efficient high-throughput screen to identify
potential hit compounds from large library collections. Next, these hits are expanded and chemically
iterated upon to optimize their potency as well as their properties so they can be absorbed into the
body, reduce the risk of toxic side-effects and allow them to be produced efficiently. These optimized
hits, called leads, are then moved into further testing where animal models are used to confirm the
results before moving them towards the clinic.

The opportunity to apply modeling at all of these stages offers the potential to increase the speed,
reduce the costs, and minimize the need for animal studies. Advances in high-throughput
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experimentation and automation are enabling access to larger and more complete datasets than ever
before. A typical drug-discovery workflow involves virtually designing a set of potential drug-like
compounds and then applying machine learning models based on both historical and target-specific
data. These models help to predict which compounds are most likely to be successful while
minimizing the risk of poor properties. Scientists in the lab then produce the selected compounds and
profile them in a range of assays that empirically test the predictions. The process is iterative in that
the new data fuels re-training of the models and subsequent selections until the desired outcome is
achieved or sufficient data is produced to convince the scientists that alternative molecules are
needed due to an adverse finding.

Project Goal
Given the increasing role that modeling is playing in drug discovery, we wanted to assess whether the
trend towards more complex modeling approaches is contributing to increased performance when
compared with more simple baselines. While there are many ways to evaluate performance of a
model, we took inspiration from a recent Nature paper in which the authors suggest that the use of
standardized data sets would be a way to help better compare new modeling techniques. [1]  We
selected a subset of these datasets from Moleculenet [2] that would be typically relevant to an early
drug discovery space. We then compared the results of these various models to each other using
several scoring metrics.

While there are a multitude of complex models that have been published, we chose to explore a
message passing neural network package that has been developed by MIT, called Chemprop. [3] In the
initial paper, the authors describe and compare the Chemprop approach to a series of other models,
however they looked primarily at a single metric and did not factor in other challenges that arise from
utilization of complex models. [4] Furthermore, we feel that there is opportunity to dive deeper into
the predictions between the models to try and understand where performance is breaking down. For
the simple models, we chose to explore a range of scikit-learn model deployments. We also utilized
scikit-learn based metrics for evaluation.

Datasets:
For the comparison of the various model types, we selected several datasets that would be relevant to
the early drug discovery space. Considering the conclusions of Bender et al. [1], we selected a subset
of datasets which were suggested for evaluation. As a result, the datasets that we have are all publicly
available and have been utilized in multiple machine learning evaluations and projects. Therefore,
there are few ethical concerns for the utilization of these datasets within our project. Any ethical
considerations for this project are then the result of the misapplication of the resulting models, or
from erroneous results, where our models may not be performing as expected. We therefore caution
that all results here are made in an attempt to compare different model types to one another and not
to utilize the resulting models for prediction of physicochemical or activity related predictions in a
drug-discovery context.
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We did diverge from the prior works in that we also converted all of the datasets to a classification
target in order to better compare the resulting models to one another, and to limit the scope of the
project. For the datasets that were sourced as regression targets, we utilized generally accepted
literature guidance to assign a binary target value. While there are a multitude of regression modeling
problems that would be beneficial for drug discovery, we felt that classification metrics would provide
a better degree of interpretability and homogeneity. Overall, we feel that these datasets represent a
good range of different size, class balance, and difficulty.

BACE Dataset: The BACE dataset is a set of compounds with their BACE (an enzyme involved in the
formation of neurodegenerative amyloid plaques) activity. In order to convert this problem to a
classification task, a generally accepted biological activity cut-off of pIC50  values > 6 was employed to
separate “active” compounds, which inhibit the target, from “inactive” compounds, which do not
show any effect. [5]

Dataset Size: Small (1513 molecules)
Class Balance: Balanced (1012 positive class : 501 negative class)

TOX21 Dataset: The TOX21 dataset is a collection of compounds and their activity across a range of
different toxicity relevant assays. [6] While there are several different assays in the dataset, we decided
to focus the dataset on the ‘NR-AhR’ assay which is a liver toxicity assay, due to the data completeness,
relevance to early drug discovery, and broad applicability to a number of different disease areas.

Dataset Size: Medium (7831 molecules)
Class Balance: Unbalanced (768 positive class  : 5781 negative class )

Clintox Dataset: The Clintox dataset is a list from the FDA of drugs and whether or not they have
shown toxicity in patients. This dataset, while small, represents some of the most relevant data for
human patients from a drug safety perspective.

Dataset Size: Small (1484 molecules)
Class Balance: Unbalanced (112 positive class : 1372 negative class)

Solubility Delaney Dataset: The solubility dataset is a measure of how much of a given compound
can be dissolved in water, which is an important metric to optimize for any drug to ensure it is able to
be properly absorbed into the bloodstream. In order to convert this to a classification problem, a
solubility measure of 0.1M was utilized to determine if a compound should be classified as soluble or
insoluble. [7]

Dataset Size: Small (1128 molecules)
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Class Balance: Unbalanced ( 185 positive class : 943 negative class)

Deepchem Lipophilicity Dataset: The lipophilicity (how strongly a molecule is attracted to grease or
fat compared with water) is also an important property for drug discovery. In order to be properly
absorbed across the gut lumen and into the bloodstream, and to avoid potential clearance or toxicity
issues, a molecule should have a lipophilicity between -0.4 and 5.6. [8] Therefore, we applied these
thresholds to convert this initial dataset into a classification one. After classification, this dataset was
imbalanced, but in favor of the positive class.

Dataset Size: Medium (4,200 molecules)
Class Balance:  Unbalanced ( 4,055 positive class : 145 negative class)

HIV Dataset: The HIV dataset contains a set of molecules and their reported activity to inhibit HIV
replication in a biochemical assay. The dataset was already a classification problem, but represents a
relatively large dataset for our purposes.

Dataset Size: Very Large ( 41,127 molecules)
Class Balance: Unbalanced (1443 positive class : 39684 negative class)

For the comparison of chemical modeling approaches, we opted to utilize a cross-validation approach
to model training and evaluation. Therefore, each dataset was only split into a training set and a
withheld validation set for final performance evaluation. A key challenge in the area of chemical
modeling is the idea of a chemical scaffold. When training a machine learning model, the model
attempts to learn the various features of the molecules, however if there molecules within a dataset
are very homogeneous in terms of a chemical structure, with only a few minor modifications, we risk
the model learning to search for a specific sub-structure, instead of learning generalizable features.
While not true data-leakage, it can limit the applicability of a model to new chemical structures.
Typically within a drug discovery project there is a desire to have models that generalize well in order
to facilitate exploration and testing of new scaffold types, and therefore limit the risk of unexpected
later findings, such as toxicity.

In order to address the problem of scaffold balance we used K-nearest neighbors (KNN) clustering to
help split the dataset such that the same chemical scaffolds are not fully represented in both the
training and validation data. We also performed a more traditional random split for comparison. It
should be noted that there are also more elaborated approaches, such as the scaffold based split
available in Chemprop [9] and while potentially effective, we found that the KNN approach was
straightforward  to execute and effective. One risk that we were aware of was that the KNN approach
might alter the class balance of the various datasets relative to the random split. However, from Figure
1, we can observe that the class balance is roughly the same between approaches and the validation
sets share the same class balance as the training set. In order to assign the number of clusters, we
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explored some metrics such as silhouette score, but found that dividing the total data set size by 30
produced clusters that were small enough to enable roughly even class balance, while still producing
clusters that were grouped by chemical substructure.

Figure 1. The final class balance metrics for the various data splits by KNN clustered and random
splitting methods

In comparing the various clusters we also wanted to evaluate how well the clustering algorithm was
doing at identifying groups of active molecules. In Figure 2, we can observe the red line indicating the
overall dataset fraction of active compounds compared with the relative fraction for each cluster for
the BACE dataset. The presence of over 38 of 50 total clusters above or below this line indicates that it
is doing a good job in grouping like-compounds together and therefore helping to more realistically
between  training and validation sets.

Figure 2. The fraction of active molecules in each cluster, with the red-line indicating the overall class
ratio in the dataset.

The other evaluation we can perform on initial datasets is to look at how the molecular fingerprints
might cluster with respect to the relevant activity data. In order to assess this in a generic way, we
generated the fingerprints and then employed the Uniform Manifold Approximation (Umap)  to reduce
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the bit vectors to two dimensions for visualization. We decided to utilize Umap over PCA since it does a
better job at preserving local structure and is more interpretable than TSNE. [10] From the resulting
visualization in Figure 3, we can get a rough gauge of how difficult the various classification tasks
might be. For instance, we can observe for the BACE dataset that many of the local clusters are
separated based on activity, while for the HIV dataset, the active compounds appear to be randomly
spread in the chemical space. Furthermore, BACE, TOX21, Clintox and Solubility all appear to have
clear clusters and structure within the data, whereas HIV and Lipophilicity both appear to have mainly
a single cluster. Therefore, we make the broad generalization that the HIV and Lipophilicity datasets
are more difficult than the others.

Figure 3. The Umap dimensionality reduction visualizations for each of the datasets.

Modeling:
To explore the question of how much value does model complexity add in the context of early
drug-discovery programs, we needed to select the models to compare. There is not necessarily a
concrete definition of what separates simple and complex models, and instead they operate on more
of a gradient. We applied general heuristics in that if the model is too complex it might overfit the data,
and fail to generalize. While, if a model is too simple, it might underfit the data and fail to give optimal
performance. Interpretability is also something which can often favor simpler models, however there
are also techniques for doing this in more complex modeling space. Lastly, the computational costs
should also be considered, with simpler models typically being faster to train and easier to optimize

6

https://umap-learn.readthedocs.io/en/latest/


hyperparameters for than more complex ones. [11]  For this project we evaluated several of the readily
available Scikit-learn models against the MIT Chemprop model.

Complex Models
In order to evaluate the complex modeling space, we opted to explore a publicly available package
instead of trying to develop a novel framework on our own. Due to the time of the project, it did not
seem feasible to build something which would function better than the work resulting from
collaborations spanning several years between academia and industry. While there are many packages
available such as Few-Shot Learning for Molecules (FS-MOl) [12] from a Microsoft Collaboration, to
DeepChem a scientific learning package from Stanford (DeepChem) [13], we opted to go with the MIT
package of Chemprop. For this project we felt that Chemprop provided a good framework that
balanced both ease of use as well as having in-built features such as data splitting, early stopping and
cross validation. Furthermore, evaluations of Chemprop against other modeling methods are present
in the literature, which help give further comparison and insight into our results. [4]

The Chemprop package offers many different approaches to training the models, however the core is
based around a directed message passing neural network (D-MPNN). This network works by passing a
directed message across a molecular “network” made up of bonds as edges and atoms as nodes. The
resulting representation is then utilized to create a learned representation of the molecule which the
model uses to train against the property prediction task. In addition, the Chemprop package also
allows for  a fixed feature representation, such as a Morgan Fingerprint, or generic physicochemical
properties and descriptors to be utilized in conjunction.  For this project we utilized a Morgan
Fingerprint representation in addition to the D-MPNN for the model to enable a better comparison to
the simpler models. The Chemprop models were then trained over 50 epochs using ROC-AUC as the
optimization metric, a 5-fold cross validation. The remaining parameters were set as default.

Simple Models
There are a vast array of different models that can be applied to classification problems, and many
packages that offer versions of them. For this project, we chose to explore the Scikit-learn
implementations since they are generally accepted in the machine learning industry and also offer
many helpful functions such as cross validation and data splitting. Furthermore, the Scikit-learn
package has implementations of many common model types which helped provide a range of models
for us to compare. [14]  For this project we decided to utilize Logistic regression and K-nearest
neighbors (KNN) as some of the most simple models. We also trained a Dummy Classifier that would
only predict the most frequent class in order to provide a very simple baseline.  We looked at both
Random Forest and Gradient Boosted Decision Trees as different decision tree type classifiers, that are
utilized often within the chemistry community and are less sensitive to data normalization, while still
remaining interpretable. Lastly, we also fit a Support Vector Machine Classifier (SVC) as these were
quite popular in many chemistry applications during the early 2000’s, before Neural networks
surpassed them in popularity. [15, 16]
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For the simple models, we featurized  the molecules using the Morgan Fingerprint generation
algorithm available in the RDkit package. While we explored different radii and bit numbers initially,
we found that a radius of 2 and a bit length of 1024 produced reasonable results without generating
excessively large vectors. While it is possible that these parameters could be further tuned in future
work, we were unable to thoroughly evaluate the fingerprint parameters across all of the datasets due
to the limited time. For the majority of the simple models we kept the parameters at their default
values, with the exception of logistic regression where we increased the maximum iterations to 1000.
For the KNN model we specified 5 neighbors. For both the Gradient Boosted and Random Forest
models we used 100 estimators and for the learning rate we used 0.1 in the case of gradient boosting.
The SVC model utilized the Sklearn algorithm to produce the predicted probabilities as these are not
available by default.

Modeling Methods
While the simple models could be trained in a reasonable amount of time on our local computers, the
Chemprop model did take a significant amount of computational time. We therefore opted to utilize a
GPU to help speed this up. From an initial test on the BACE dataset, which was one of our smaller ones,
training the chemprop model locally on a MacBook Air took over 1.5 hours, while on the University of
Michigan Great Lakes Cluster it took less than 5 minutes. When factoring in the cross validation and
multiple training attempts, the Chemprop training would have been prohibitive to do locally. While
many tools exist to access GPU resources, this highlights one key challenge to utilizing more complex
models. For this project we opted to use the University of Michigan Great Lakes cluster and a  Nvidia
Tesla V100 GPU to train our Chemprop models.

In order to get a sense of how well each model was generalizing, while leveraging the entire dataset,
we opted to use cross-validation. Cross-validation is where the dataset is divided into several equal
parts and one part is held out as a test set during a round of training. Training and this testing is then
repeated with each split until all have been used once. The resulting difference between each test
score, can give an empirical measure of how well the model is generalizing to new data. For this
project, we opted to perform 5-fold cross validation to keep the training times reasonable. This was
performed either using the Scikit-learn function, or as a command line feature in the Chemprop
package. After performing cross-validation, we then trained the various models on the entire training
set and made predictions on both the training and validation sets. The resulting model was then used
to predict on both validation and training splits and the metrics were aggregated for evaluation. All the
code utilized for this project is available in the git repository
(https://github.com/PJMichaels/Chemistry-Capstone/tree/final)

Evaluation and Results

Split Method Comparison
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In order to determine which data splitting method would be best to carry through for evaluation, we
compared a random split to the cluster based split for each of the different model types. In Figure 4,
we can see that, with the understandable exception of the dummy model, the performance of all
model classes is lower in the case of the clustered split.  While this does mean that the models may
appear to be lower performing, we feel that this is more representative of what a real-world drug
discovery team would face where they are trying to evaluate novel targets based on the limited data
they have available and predict into new chemical spaces that the models have not seen. We therefore
utilized the cluster based method for further evaluation.

Figure 4. This figure shows a comparison between the random and clustered split ROC-AUC scores for the
different models on the validation dataset. The results are aggregated across all 6 datasets to provide a

generalized view.

Cross Validation Results
To explore the cross validation results, we chose to compare the ROC-AUC metric because it was not
affected by the descrimination threshold and was the metric we utilized to optimize the Chemprop
model during training. From Figure 5, we can see that generally Chemprop scored highest, even when
factoring in the standard deviations. Interestingly, for the ClintTox dataset, Chemprop scored about
the same as SVC, logistic regression and the gradient boosted tree. With the exception of the BACE
data set, the others did have models that were close to the score of the Chemprop model from a cross
validation perspective,  suggesting that some of the simple models can still generalize well and they
might be performant in many circumstances.  Factoring in the standard deviations on some of the
scores as well might make it difficult to differentiate them by ROC-AUC alone. The variation in the cross
validation scores for the simple models, with values as high as 0.12 in some cases suggests that the
data set splits might be more important in those cases than for Chemprop where these were <0.04.
The one note here is that we were not able to perform scaffold or cluster based splitting during the
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cross validation process, so the random presence of the scaffolds in the train/test splits might make
these results overly optimistic.  To account for this we utilize the results of the withheld validation data
below. A future adaptation could work to incorporate a scaffold based splitting approach to the cross
validation process to improve this moving forward.

Gradient
Boosted Tree

Dummy Most
Frequent

Random
Forest

Logistic
Regression

KNN SVC Chemprop

Solubility 0.78 ± 0.1 0.5 ± 0.0 0.79 ± 0.09 0.85 ± 0.08 0.7 ± 0.07 0.83 ± 0.07 0.93 ± 0.04

HIV 0.69 ± 0.05 0.5 ± 0.0 0.74 ± 0.03 0.69 ± 0.04 0.68 ± 0.04 0.68 ± 0.04 0.8 ± 0.02

Lipophilicity 0.72 ± 0.12 0.5 ± 0.0 0.68 ± 0.16 0.77 ± 0.1 0.63 ± 0.11 0.73 ± 0.09 0.86 ± 0.04

TOX21 0.82 ± 0.03 0.5 ± 0.0 0.84 ± 0.04 0.81 ± 0.03 0.72 ± 0.06 0.76 ± 0.04 0.87 ± 0.01

Clintox 0.78 ± 0.01 0.5 ± 0.0 0.74 ± 0.07 0.8 ± 0.07 0.58 ± 0.07 0.78 ± 0.07 0.79 ± 0.03

BACE 0.74 ± 0.09 0.5 ± 0.0 0.73 ± 0.11 0.74 ± 0.12 0.74 ± 0.08 0.7 ± 0.11 0.91 ± 0.02

Figure 5. The ROC-AUC scores resulting from the cross validation of the various models on their respective
datasets.

Modeling Results on Withheld Validation Data
A major consideration for an experiment of this complexity, with multiple datasets and multiple
models, is which scoring metric is most appropriate for model optimization on a given dataset.
Scikit-learn offers over twenty different classification metrics to choose from. We decided to look at 3
of the more common metrics, accuracy, f1 score, and roc-auc. Each of these have their own pros and
cons. Drug-like molecules, and especially the subset that have the specific therapeutic effect for a
specific disease, are often an underrepresented population, as is the case for the majority of the
datasets in this study. With this in mind, it is important to consider the information in Figure 1 (above)
which highlights class proportionality when selecting metrics to measure model success. For this
project, we explored how well each of these metrics differentiated the models from a dummy classifier
that simply picked the majority class. We evaluated each of these metrics against the withheld
validation data from the cluster based splitting results.
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Figure 6: Comparison of dataset and model combinations by means of accuracy scores and with
reference to a most frequent class prediction dummy classifier

The first metric we looked at was accuracy score (Figure 6), which represents the number of correct
predictions over the total number. Accuracy score is easy to communicate to stakeholders, but in cases
where there is significant class imbalance it over represents the majority class and does not properly
represent model success. Figure 6 displays accuracy scores for different models and different dataset
combinations and compares this against our sanity check with the dummy model predicting.
Considering the class imbalance in all but the BACE dataset, it is unsurprising that accuracy scores do
not significantly differentiate model success from the dummy classifier, and therefore  is not an
effective scoring metric for our datasets.

Figure 7: Comparison of dataset and model combinations by means of f1 scores and with reference to a
most frequent class prediction dummy classifier
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Figure 7 shows model results for different datasets represented by the F1 score, which is also known as
the harmonic mean of recall and precision. This metric does a good job of representing model success
as long as the positive class is the under-represented class.  In the case of our Lipophilicity dataset, the
negative class is the one that is significantly under-represented, and using this metric does not allow
for differentiation of models trained on this dataset. In all other cases we can see more significant
model differentiations. It is interesting that with the BACE dataset, all models performed equal to or
worse than the dummy classifier. Chemprop differentiated itself from other models for the HIV and
solubility datasets, and performed in the top cluster of models for TOX21, but was not the top model.
In general, these models are all scoring rather low, which highlights the difficulty in these chemistry
prediction problems.

Figure 8: Comparison of dataset and model combinations by means of roc-auc scores and with reference
to a most frequent class prediction dummy classifier

The metric we found most informative was roc-auc score (Figure 8), which seems to do a good job of
differentiating model success from the dummy models. Models that score above 0.5 show positive
differentiation of predictions from random guessing, with a roc-auc value of 1.0 being ideal. From the
roc-auc scores, there was no clear model that was best across the datasets. Chemprop achieved
considerably better scores for the BACE and clintox datasets, and competitive scores for all other
models. Random Forest performed best for the Solubility and TOX21 datasets. Logistic Regression
achieved the top roc-auc score for the lipophilicity dataset. In general, the KNN models seem to be low
performing for these datasets. Clintox is an interesting dataset because for the majority of the models
they performed worse than the dummy classifier suggesting they were not able to learn a signal from
the noise. This is one case where Chemprop did something that no other model could. Overall, these
model results suggest  that there is no single best model for these datasets, but instead different
models may still offer advantages in certain circumstances.
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Figure 9: This figure compares model training and validation ROC-AUC scores across models for all
datasets.

Another factor to consider in regards to model performance is overfitting. Figure 9 compares training
and validation set prediction results by ROC-AUC score across all datasets, which if drastically different
can be a sign that a model is overfit and therefore not generalizing well onto new data. Figure 9 reveals
two major insights. First, the models where nearly every training score is almost perfect are the ones
that are most prone to overfitting, and users should be extra cautious when optimizing these for real
world data. Chemprop and Random Forest in particular stand out in this regard as there is almost no
variance in the training scores, and they are very high scoring on training data and lower performance
on the validation data. The GradientBoosted classifier appears to be the most guarded against
overfitting, even after minimal parameter optimization. This may make it one of the easier models to
get up and running.

While we did not explore hyperparameter optimization extensively, this would be a good place for
future efforts . From Figure 9, we can see that there is still room for model improvement through
tuning. Models that show a wide gap between their train and validation data can often be further
generalized in terms of their learnings to increase the overall model output. Something that would be
interesting to evaluate in future work would be a relative effort and time spent on hyperparameter
tuning compared with relative increase in performance for each of these models. A “simple” model
might no longer qualify for that category if to achieve maximum performance required significant
effort tuning. KNN for instance stands out as a model where this could be the case given the large gap
between training and validation scores.

BACE Results In-depth Review
In order to explore the differences between modeling techniques further, we chose to look closely at
the BACE dataset due to its manageable size compared to the HIV dataset and the prediction of
on-target potency is often the most critical task for many drug-discovery programs. In order to
maximize performance, the hyperparameter optimization was performed using the Chemprop
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algorithm that involves a Baysian optimization approach to search over the various neural network
parameter space. The hyperparameter optimization suggested that increasing the drop-out from 0 to
0.3 helped performance, suggesting that a reduction in the unoptimized model complexity might help
improve generalizability. Interestingly, the other parameters of hidden-size and network depth both
increased from 300 to 900 and 3 to 6 layers respectively. This suggests that adding additional model
complexity could help with the performance. It should be noted that the hyperparameter optimization
was performed to improve the roc-auc metric, so further exploration might yield other parameters that
improve other metrics.

Following the updated training, if we explore the predictions for each of the models relative to the
actual labels, shown in Figure 10, it is clear that many of the models are not performing particularly
well. The Dummy Most Frequent classifier appears in dark green for most samples because it simply
assigns with complete confidence the positive label for this dataset. The simpler models of Logistic
Regression, Random Forest and Gradient Boosted Trees all show a lighter color, indicating that the
models are not particularly confident in their decisions. The KNN classifier is clearly not a good choice
in this situation as it has large sets that are not correctly predicted. Interestingly, the complex
Chemprop models appear  to do a better overall job based on the heatmap, however there are some
clear groupings of molecules where all of the models appear to perform poorly.

Figure 10. A heat map showing the absolute difference between the predicted probabilities and the
actual target labels. Darker green colors indicate less difference from the true value, while red colors

indicate a stronger in-correct prediction.
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The other aspect of optimization that we then explored for the various different models, was how the
decision threshold affected the true positive and false positive rate. To evaluate this across the
different models, we plotted the ROC curve (Figure 11) for the different models. This curve can help
determine how sensitive the prediction accuracy is to changing the threshold at which a prediction is
considered to be positive or negative. The area under each curve is also the roc-auc metric that was
discussed above. From Figure 11, it can be seen that both Chemprop models are relatively high
performing, and from the simple models, the Gradient Boosted Tree is the best performing. Therefore,
we selected the Optimized Chemprop model and the Gradient Boosted Tree as our models for further
evaluation. This curve also helped us select a descrimination threshold for further scoring. To
accomplish this we calculated the J-statistic for each threshold value and selected the maximum.[17]
However, these optimal thresholds were quite high for some of the models, such as the optimized
chemprop which made it difficult to compare the models. Therefore, an intermediate descrimination
threshold of 0.6 was selected, which seemed to strike a reasonable balance of true positives, which are
of more interest in the drug discovery field to avoid missing potentially useful compounds.

Figure 11.  The Receiver Operating Characteristic curve for the models on the BACE dataset.

Once the descrimination threshold was determined, the series of scoring metrics were calculated in
order to explore the model performance. From Figure 12, we can see that overall the scores are not
particularly impressive. In part, since there is some class imbalance, the dummy prediction is relatively
high scoring in terms of accuracy and f1. However, we can see that the Matthews Correlation
Coefficient, similar to a Pearson's R, but for classification problems, is quite poor for the Dummy
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model, as is the roc-auc. The optimized Chemprop model shows similar performance to the Dummy
classifier, along with a higher Matthews correlation coefficient and drastically lower log-loss, meaning
that the model is performing better than baseline, and is more confident in the results. We can also
observe from the scores that the hyperparameter optimization for the Chemprop model helped in
some aspects such as accuracy and f1 score, but hurt in others, such as log-loss or roc-auc. From the
results it is not clear how much value the hyperparameter optimization added.

Log Loss ROC-AUC Accuracy F1 Matthew’s Corr

Random Forest 0.57 0.63 0.62 0.72 0.12

SVC 0.71 0.53 0.64 0.76 0.09

Dummy Most Frequent 9.02 0.50 0.74 0.85 0.00

Logistic Regression 0.96 0.53 0.60 0.72 0.03

Gradient Boosted Tree 0.53 0.68 0.70 0.80 0.21

KNN 4.16 0.49 0.54 0.66 -0.04

Chemprop Optimized 0.78 0.70 0.74 0.83 0.28

Chemprop Default 0.48 0.76 0.69 0.78 0.23

Figure 12. Table showing the different BACE models and their respective scores on the validation data.

Figure 12 also allows us to compare some performance metrics between the simple models. The
simple models did not appear to perform drastically better than the baseline Dummy model for
accuracy of F1. However, in agreement with the roc-curves above, the Gradient Boosted Decision Tree
and Chemprop models showed some of the best overall scores. Since many of the models were not
particularly high-performing we wanted to explore the interpretation of these models to see if we
could understand what could be happening as well as try to understand if there are any fundamental
differences between the Gradient Boosted Tree and the optimized Chemprop model.

In examining some of the molecules that were predicted correctly or incorrectly, the example shown in
Figure 13 is informative. The top molecule is inactive in the data, while the bottom two both belong to
the positive class. Interestingly, the Gradient Boosted Tree model predicts all three to be active, while
the Chemprop-optimized model predicts them all to be inactive. Given the only difference in the three
structures is the location of the oxygen atom and the size of the ring on the left side, it is perhaps
understandable that these would have very similar fingerprint based representations and therefore
would be predicted similarly. This example highlights one of the key challenges in using 2D
representations, where in 3D, the size of the ring might completely prohibit the molecule from binding
the protein correctly. These subtle differences that have large impacts on the results is part of what
makes chemical property prediction so challenging.
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Figure 13. Example molecules from BACE dataset showing some of the subtlety that is often present in
chemical structure to biological activity relationships.

Lastly, we wanted to try and understand to what extent the model interpretability might compare
between the simple and complex models. In the chemical fingerprint based modeling space,
interpretation is a very open and active question, with many papers only coming out in the last few
years. [18, 19]  However, many of these approaches involve more elaborate featurization and
descriptors and typically utilize genetic algorithms or Monte Carlo simulations. For our example, we
wanted to see how we could relate this to the circular fingerprints.

In order to explore the simple model interpretation. We extracted the feature importances and then
ranked the top 20 values. These were then associated with certain positions in the fingerprint array
using RDkit. [20] It should be noted that there is potential for some bit collisions, so the substructures
might not be exactly the same for every molecule, but when we checked a handful of different
molecules these structures consistently appeared. From Figure 14, we can see the top bits and then
the associated substructures of these. Interestingly, some of these are quite simple, such as bit
number 650, 623 and 904 which are simply a single oxygen, nitrogen or fluorine atom respectively. The
highest importance bit was 444, which is simply a basic nitrogen atom. Other highly scored bits are
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various parts of common substructures or ring systems. This result likely helps explain some of the
above observations that the model is more learning general scaffolds, and without additional data
might have a hard time distinguishing between subtle atomic features from a fingerprint alone. Bit 511
was present in this dataset, and was perhaps one of the more specific bits in that it requires a specific
5-membered ring to contain a nitrogen atom. The results from this exploration seem to suggest a
higher importance of the features holistically over an individual few bits. The small nature of these
might also suggest that exploring larger radius fingerprints could also contribute to a less localized
interpretation of the chemical structure.

Figure 14. The feature importances and the associated fingerprint bits for the top gradient boosted tree
predictions.
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To explore how interpretability would work in a complex model space, we utilized the Chemprop
interpret function. This function utilizes a Monte Carlo simulation over the different models and
substructure types to generate a minimum substructure leading to a positive result as well as a
measure of how much that substructure contributes to the prediction. In practice, this function was of
limited usefulness in our hands as the simulation took almost 30 minutes to run on each compound.
From the interpretation results, shown in Figure 15, the substructure that was contributing significant
activity to the prediction, was also present in several of the other molecules that were predicted to be
inactive. It is possible that this is a result of the model not being particularly performant, or that there
were other more negatively correlated features on these molecules as well. From our work here, we
did not find the fingerprint based interpretability of either the simple or complex models to add
significant insight to the problem of BACE activity prediction in such a way that it would be easily
actionable.

Figure 15. The results of a Chemprop interpretation of some of the molecules. The row highlighted in blue
shows the only positive example here, which is why it is the only one with a shown substructure.
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Conclusion

Next Steps
While these results are interesting, we recognize that there are many future directions that would be
relevant to explore. From this work, we were only able to perform minimal hyperparameter tuning,
and only on a single dataset. It would be useful to explore whether the results from the BACE dataset,
where Chemprop performance did not improve significantly with the tuning, holds true for other
datasets. While some parameters were explored for the simple models, these could also benefit from
additional tuning of the parameters. In particular, the depth and minimum sample parameters in the
tree-based methods can often modulate overfitting and might help improve performance further. The
support vector classifier could also benefit from tuning the kernel function and the regularization
parameter since its performance was lower than expected overall based on the previous literature.

Another opportunity for future work would be to expand the number of complex models. While the
setup and configuration of these can take time, it would be interesting to understand how these more
complex models relate to one another. For instance, other neural network (NN)  modeling approaches
such as Deepchem [13] or Few-Shot Mol [12, 21] would be relevant to compare. While the software is
often proprietary and costly, the results could also be compared to 3-dimensional docking [22] or
quantum mechanical based Free Energy Perturbation (FEP). [23] The idea of multi-task learning, where
representations learned on one task can then help improve predictions for another task is also
implemented in chemprop, but was not tested for this project, but could have an impact on the
performance.

Lastly, the featurization of the molecules is of the utmost importance to model performance. There are
some opportunities to leverage calculated molecular properties, such as through the descriptastorus
package [24], which might help improve generalizability. Moreover, other fingerprinting techniques or
count based fingerprinting [25] could also be informative to compare. While Chemprop provides a
deep-learning approach to the chemical representation with the graph-based approach, it could be
informative to consider undirected graph based or other deep-learning approaches as well. While
difficult computationally, quantum mechanical descriptions based on molecular dynamics are also
becoming increasingly popular and less costly to obtain.

While there are many directions to explore further, it could be of interest to consider various ensemble
methods where one does not need to look for a “best” model but instead can capture the benefits of
several modeling approaches at once. This is further supported by the iterative and uncertain nature
of drug discovery where many experiments are still likely to be run, so even if models can enrich the
target molecules in ones that are higher value it will help discover new drugs faster and with reduced
cost.
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Conclusion
From the above results, it is clear that data science in the drug discovery context is not a trivial
question. While it is hard to say with confidence whether simple or complex models are “better” we
have found results that in certain cases, a complex model such as Chemprop can be higher performing
than the simple model types. However, there is also clear evidence that Chemprop can also overfit and
for other datasets it is not as high performing as some of the simpler models. Combined with some of
the complexity to setup, train and run a Chemprop model there is also strong justification to utilize
simpler modeling approaches at first as well. Furthermore, within difficult problems faced in drug
discovery, models have not yet consistently demonstrated very high performance as evidenced by our
predictions on the BACE target. As a result, careful review and curation of the results is important in
addition to looking at aggregated scores. Our results between the different data splitting techniques
also highlight the need for caution when moving to newer chemical structures that the models might
not be as performant on. Overall, we hope that this framework has proven useful for future datasets
and predictions as they can be easily integrated into the pipeline. We also believe that this approach
can provide additional context and is in-line with the views of many in the chemistry community of
utilizing a range of common and standardized datasets to provide context when developing new
modeling techniques to better understand where and when to apply them. [1]
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